何福坡,博士(后),广东工业大学“青年百人计划”引进人才,广州市“珠江科技新星”入选者
1. 教育与工作经历
2007,济南大学,获得学士学位
2011-2012,日本产业技术综合研究所(AIST),联合培养博士研究生
2013,华南理工大学,获得博士学位
2015,广州医科大学,博士后流动站出站
2015-至今,广东工业大学,机电工程学院,讲师,副教授(2016)
2. 研究方向
陶瓷三维打印;生物制造;生物陶瓷;陶瓷刀具
3. 主持或参与的主要项目
[1] 新型多孔碳酸钙基骨修复材料的制备及碳酸钙成骨机制的探索,国家自然科学基金青年基金项目,主持
[2] 高强韧性可降解铁/β-磷酸三钙复合材料的创新制备及性能研究,广州市科技计划项目“珠江科技新星”人才专项,主持
[3] 用于治疗骨质疏松状态下骨缺损的生物陶瓷支架的构建与相关机理研究,广东省自然科学基金面上项目,主持
[4] 可降解铁-磷酸钙陶瓷复合材料的设计、制备和性能研究,广东工业大学“青年百人计划”科研启动经费,主持
[5] 挤出成型-微钻孔技术制备磷酸锂镁生物陶瓷支架及其生物学响应,华南理工大学广东省生物医学工程重点实验室开放课题,主持
[6] 个性化珠宝首饰增材制造技术的研发与推广应用,广东省科技计划项目,参与
[7] 难加工材料增材制造关键技术,季华实验室科研项目,参与
4. 近5年主要论文和专利(第一或通讯作者)
主要论文
[1] High throughput synthesis and screening of zinc-doped biphasic calcium phosphate for bone regeneration. Applied Materials Today. 2021, 25: 101225.
[2] Alliance of gallium and strontium potently mediates the osteoclastic and osteogenic activities of β-tricalcium phosphate bioceramic scaffolds. Chemical Engineering Journal. 2021, 412: 128709.
[3] Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration. Materials Science & Engineering C-Materials for Biological Applications. 2020, 112: 110892.
[4] Novel extrusion-microdrilling approach to fabricate calcium phosphate-based bioceramic scaffolds enabling fast bone regeneration. ACS Applied Materials & Interfaces. 2020, 12, 32340−32351.
[5] Enhanced osteogenesis of honeycomb β‐tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study. Journal of Biomedical Materials Research Part A. 2020, 108A: 645–653.
[6] Influences of gallium substitution on the phase stability, mechanical strength and cellular response of β-tricalcium phosphate bioceramics. Ceramics International. 2020, 46: 16364–16371.
[7] Novel strategy to accelerate bone regeneration of calcium phosphate cement by incorporating 3D plotted poly(lactic-co-glycolic acid) network and bioactive wollastonite. Advanced Healthcare Materials. 2019, 8: 1801325.
[8] Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin. Materials Science & Engineering C-Materials for Biological Applications. 2018, 82: 217–224.
[9] β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids and Surfaces B-Biointerfaces. 2018, 167: 318–327.
[10] Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. Biofabrication. 2017, 9: 025005.
[11] Fabrication of β-tricalcium phosphate composite ceramic scaffolds based on spheres prepared by extrusion-spheronization. Journal of the American Ceramic Society. 2018, 101: 5811–5826.
[12] Tailoring the mechanical property and cell-biological response of β-tricalcium phosphate composite bioceramics by SrO-P2O5-Na2O based additive. Journal of the Mechanical Behavior of Biomedical Materials. 2018, 86: 215–223.
主要专利
[1] 可降解生物活性陶瓷/金属复合材料及其制备方法和应用,专利号:ZL 2016 1 0273661.0
[2] 一种可降解生物活性复合陶瓷微球支架材料及其制备方法及应用,专利号:ZL 2016 1 0889782.8
[3] 一种基于光固化成型三维打印生物陶瓷支架的方法和应用. 专利号:ZL 2017 1 0339197.5
[4] 一种抗感染生物陶瓷人工骨及其应用,专利号:ZL 2017 1 0500117.X
[5] 一种生物陶瓷支架及其应用,申请号:201910695701.4
办公地点:广东工业大学大学城校区实验3号楼209室
邮箱: fphe@gdut.edu.cn